
GLNebula Manual

Juan José Aja Fernández - juan.aja@gmail.com

4 de julio de 2006

1. Introduction

GLNebula is a system designed for the real-time visualization of planetary
nebulae models (and in general, any static one-component scalar field). produ-
ced by three-dimensional photoionization codes such as: Cloudy 3D1. It uses
three files: each one represents the emission values of one ionized element inside
the nebula. The files are arranged in a cubical grid with one scalar per cell, re-
presenting the emission value. Each file is matched to a color channel so that the
scalar values represent the intensity of a particular light color, also the cells in
the final model have color blending capacities as well as transparency to provide
the plasma-like look characteristic of their astronomical counterparts. GLNebu-
la uses 2D camera-oriented particles to construct the model of the nebula and
give it the illusion of being volumetric, thanks to this fact the performance is
very acceptable (as opposed to use proper cubes to represent each cell).

Currently it uses two types of particles: camera-oriented quads (known as
billboards) and point sprites. The latter requires a fairly modern video card,
specifically one that supports the extension: GL ARB point sprite2, and is con-
siderably faster than the billboard approach3. Unfortunately one vendor of video
cards (ATI) hasn’t complied fully with the OpenGL standard, so the extension
may or may not be present, and is usually broken (for instance in the Radeon
9800 models, plain point sprites can be displayed, but texturing them isn’t sup-
ported, so if you have an ATI card and the model appears dark or doesn’t
appears at all you could try disabling textures).

For an in-depth explanation of how GLNeblua works (and if you speak spa-
nish) please let me know and I will send you a copy of my thesis.

Also if you are interested in the real-time visualization of dynamic scalar
fields (such as flow visualization), a version which handles time and change
within the fields is currently on the works.

1http : //132,248,1,102/Cloudy3D/
2This can be checked with the glewinfo program, bundled with the glew library required

to run GLNebula and in the windows version zip
3Moreover the grid using point sprites can be encapsulated in a display list, so the perm-

formance is even better

1



2. Features

Real-time visualization of medium to large realistic models: Due
to the use of bidimensional particles to create the effect of a 3D volume,
GLNebula offers enough framerates as to provide interactivity with the
user (meaning no large time gaps between user events). It has been tested
with models up to 250x250x250 (albeit with 500 thousand visible cells)
with satisfactory results. Also by means of texture mapping, color blending
and particle transparency the resulting models can look fairly similar (at
least to my perception, I’m not an astronomer) to the real ones.

Free camera control: A camera has been implemented in GLNebula
to allow the user free exploration of the model, basic camera movements
(zoom in/out, model rotation) are done with the mouse.

Parameter control: GLNebula offers full control of the visualization
parameters to the user, so that: transparency, type and size of the particles,
color scaling and scalar threshold value can be adjusted and the changes
made apply in real time (in the case of billboards, with sprites a button
must be pressed).

Session management: In order to speed up the process of reconstructing
previous visualizations, GLNebula has a simple session managment system
which can save the current state of the model or load an existing one. Also
it can take screen captures of the main window to png images with the
possiblity of writing a caption to the final image containing the name of
the session, the dimensions of the grid and the datafiles representing the
colors.

3. File structures

The data files must contain only ASCII characters (numbers) and no other
data but the scalars must be present. They MUST be CUBES, not cubical
grids are not supported for now, also they must have the same dimensions be-
tween each other.

GLNebula uses a particular file structure for its sessions:

Grid dimensions

Red layer filename

Green layer filename

Blue layer filename

Red scaling (red saturation)

Green scaling (green saturation)

Blue scaling (blue saturation)

Scalar value threshold

2



Transparency (alpha channel)

Particle size: 0 = camera-oriented quads, 1 = point sprites

Texture filename

Enable/Disable center mark

Enable/Disable axis

Enable/Disable texture mapping

Enable/Disable particle blend

Be wary that the order matters, so expect unusual behavior if you manually
edit the file without care.

The “standard” extension of the files is .neb, but it isn’t a must (for conve-
nience the filter in the load session file chooser window is set to *.neb, but can
be changed to display a session file with other extension).

4. Requirements and installation

The easiest way to run GLNebula is under windows, by downloading the zip
containing the executable and the needed .dlls and by double clicking on the
application.

The source code compilation requires several libraries and their respective
development headers to work, in no particular order:

OpenGLL4, GLUT5

GLEW6

Fast Light Toolkit (fltk) 1.1.77

Simple Direct Media Layer (SDL)8, SDL Image9

GD Graphics Library10

Also a modern video card is greatly recommended, the performance increa-
ses a lot and today’s commodity hardware prices are relatively low (in future
versions GLNebula will use shaders, which will allow the visualization of very
large models with much more detail and performance and are only present in
modern GPUs).

4http : //www.opengl.org/
5http : //www.opengl.org/resources/libraries/glut.html
6http : //glew.sourceforge.net/
7http : //www.fltk.org
8http : //www.libsdl.org/index.php
9http : //www.libsdl.org/projects/SDLimage/

10http : //www.boutell.com/gd/

3



4.1. Linux compilation

Compiling it’s as easy as: ./configure, make (the binary will be in the src/
directory) and optionally make install to copy the binary into /usr/local/bin.
The Makefile bundled with the tarball will try to find the development headers
in their respective directories under /usr/local (for instance the OpenGL header
must be in /usr/local/GL/gl.h, and so on), so edit it accordingly if that is not
the case.

Also there’s a .kdevelop file, just open it under kdevelop and build the pro-
ject, it should go without trouble).

Look for distro-specific binaries (Fedora, Suse, Ubuntu, Debian) in the near
future, also let me know of any trouble with the process.

4.2. Windows compilation

For windows there is a DevC++11 project file, just install the appropriate
devpaks (all available through the community devpaks in the package manager)
and build the application. (sorry MS Visual Studio users: no .dsps for now). As
soon as I have access to MacOS X I’ll make a binary, for now I believe that the
Makefile it’s fairly similar, so I hope it works with minimal modifications.

5. Using GLNebula

5.1. The control window

Here’s where the visualization parameters go, let’s review each control:

Menu: The menu has four sub-items:

Load Session: Displays a dialog to select the session file to open

Save Session: Saves the current session

Save Session As: Displays a dialog to select the filename to save the
current session in

Quit: Exits the program

Load Buttons: When pressed, the buttons at the leftmost part of the
window will open a dialog that will let you choose a file to load: the first
one will load a session (similar to the Load Session menu item), the next
one let’s you choose the texture (bitmap) file to apply to the particles (it’s
entirely optional, GLNebula can work without it), lastly the remaining
three correspond to the data files (in RGB order). The path to the files
selected will appear in the boxes to the right of each button. When all
three data files have been loaded, push the Update Data/Cut/Textures
button to display the model in the main window (this step isn’t necessary
if you loaded a session: the moment.you select the file and press OK the
data will be loaded automatically).

11http://www.bloodshed.net/devcpp.html

4



Text boxes: The first five boxes only display the path to the files selec-
ted with their respective load button. The last one, labeled Cut Value, is
editable. In this box goes the minimum value that the scalars in the data
must have, so for example if the cut value is set to 1e-19, the cells with
scalar value less or equal to 1e-19 will be considered invisible and will not
be displayed. Setting this box to a proper value can increase performance
considerably, note that when the data is loaded the console (presented a
few items below) will display the maximum, minimum and average values
to select possible candidates for threshold values.

Parameters: These sliders control the diferent parameters that define a
visualization.

Alpha: This slider will control the transparency, going from 0 to 1
stepping by 0.01 every time the little arrows are pressed.

Particle Size: This widget modifies the particle size in the model,
the maximum size is tied to a parameter in every video card so beyond
certain point (usually 60 but i’ve seen bigger point size) is impossible to
increase their size.

Scaling: The next three sliders control the color scaling (saturation)
of the visualization, so if for instance you would like to increase the pre-
sence of a particular ionized element, just increase the value of the color
corresponding to the proper data layer, similarly if you want a layer to
dissapear simply set the appropriate scaling factor to zero.

Sampling: This slider controls the data sample rate in powers of 2,
so if it’s set to 1 only half of the cells in the grid will be displayed, if set
to 2 only 1 in every 4 cells will be displayed, and so on.

Misc. checkboxes: These control the displaying of the center mark and
axes, also enable/disable texture mapping and blending.

Particle type radio buttons: Mutually exclusive, they determine the
type of particle to be displayed.

Update buttons

Update Data/Cut/Textures: This button reconstructs the grid,
updates the threshold value and loads the textures.

Update Params/Scaling: When using billboards the changes ma-
de in the parameters take effect instantly, so this button is greyed out.
But when using point sprites the parameters change won’t reflect in the
visualization until this button is pressed.

Snapshots: The snapshot button will save the current session and then
will write a png image of the current visualization. It’s important to first
save the session or to have a session name defined, otherwise the image
won’t be written. The checkbox above the button will enable/disable the
writing of a caption containing the grid dimensions, data files and session
name to the image.

Console: Here’s where all the program output is printed, every error
and message is displayed here. Errors are preceded with asterisks for easy
detection.

5



Figura 1: GLNebula control window)
.

5.2. The main window

Here’s where the model will appear when the data is loaded and where the
camera controls are. To rotate the model simply click the mouse left button
anywhere inside the window and while still pressing it, drag the pointer towards
the direction of the desired rotation. To zoom in or out just press the right mouse
button and drag it (upwards to zoom in, downwards to zoom out). Zooming can
also be performed with the mouse wheel.

6. Future features

Hopefully with more wide spread use many feature requests will appear, for
now these are the future features that GLNebula will have:

Further optimizations: To speed up the rendering GLNebula will use
Vertex Arrays and Vertex Buffer Objects, features that require a more
powerful GPU but will provide greater frame rates (and consequently lar-
ger models could be used).

Filters: Currently I’m implementing a simple sqrt filter to normalize the
transparency in the model, but unfortunately is very slow. In the future
I plan to use shaders (this requiring a more powerful GPU, so it will be
optional) to make more filters and preserve real-time framerates.

6



Figura 2: GLNebula main window displaying a model of MyCn18 (Data courtesy
of Christophe Morisset, IA UNAM)

7



Visualization of dynamic scalar fields: By introducing the notion of
time it will be possible to load n files (probably by specifiyng a common
header or preffix) representing n states of a scalar filed across a period
of time, and to provide control over the animation by a slider bar which
will control the timeflow, all this in real-time. Hopefully this feature will
attract the interest not only of astronomers but anyone interested in flow
visualization.

7. Bug reports, feature requests, questions, com-
plaints, etc.

Contact me: juan.aja@gmail.com, I’ll respond as soon as possible.

8


